Bill Gates calls for reducing health care inequities in a AAAS Annual Meeting plenary address.
The number of child deaths around the world has declined by half in the past two decades, but that number could be cut even further with the help of artificial intelligence and gene editing tools, said Bill Gates at the American Association for the Advancement of Science’s Annual Meeting in Seattle.
One of the aims of The Bill & Melinda Gates Foundation, co-chaired by Bill Gates, is to reduce inequities in global health by reducing infectious disease and childhood mortality in developing countries. In his plenary address, Gates said the new technologies will help with “things we’re just on the verge of being able to do, that will advance that mission very dramatically.”
“We have an opportunity with the advancement in tools like artificial intelligence and gene-based editing technologies to build this new generation of health solutions so that they are available to everyone on the planet,” Gates said.
These solutions also could benefit wealthy countries seeking to bring down their own health care costs, he said.
“Today, most investments in health R&D are really focused almost entirely on the rich countries and in some cases because of pricing policies, only on the United States,” said Gates. “And this is causing the priorities of what gets done and the requirement that it be simple and low-cost to be missed, and therefore we’re not taking the best of science in treating something that can have a potential impact.”
In 1990, more than 12 million children under the age of 5 died worldwide. By 2015, the number was 5.9 million, according to the World Economic Forum. Children in the developing world, particularly sub-Saharan Africa, remain threatened by malnutrition and infectious diseases including HIV, tuberculosis and malaria.
Artificial intelligence, including machine learning, are already being used to model disease spread, find new drugs and understand complex biological systems. Machine learning may be especially useful for examining the microbiome, the full set of genetic materials from bacteria, fungi and viruses that live in and on the body, Gates said.
The contents — and sometimes the disruption — of the microbiome have been linked to malnutrition in the developing world, as well as diseases like obesity and diabetes in the developed world.
“This is an area that needed these [gene] sequencing tools and the high-scale data processing, including AI, to be able to find a path,” said Gates. “There’s just too much going on there if you had to do it, say, with paper and pencil, to understand the hundred trillion organisms and the large amount of genetic material.”
Gene editing tools like CRISPR technology, which allow scientists to alter DNA sequences and change gene function, are already being tested against diseases like malaria, where it is used to change the gut of mosquitos that carry the malaria parasite. Researchers also are using gene editing to modify the HIV virus and sickle cell anemia mutations.
For the moment, many gene editing treatments require an expensive and complicated procedure that alters cells outside of the body, replacing them only after old cells have been wiped out with chemotherapy. These procedures “definitely keep them out of broad, low-income country usage,” said Gates, who added that the goal is to find ways to alter genes inside the body in simpler outpatient procedures.
As with many global challenges, climate change looms large against the backdrop of global health, Gates said. Scientists and policymakers have paid less attention to developing adaptations to climate change, in favor of looking for ways to mitigate greenhouse gas emissions.
“And that’s partly because the vast proportion of the suffering that will be caused is for subsistence farmers near equatorial regions,” said Gates. “And so you have this mismatch between the place where the money and science are and the place where the historical emissions are, which is almost entirely separate from where the suffering will be.”
Leave a Reply